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1. INTRODUCTION

Study of the critical behaviour of the Ising model has several attractions.
On the one hand, the Ising-like models are simple enough, which is of a
special advantage in the statistical physics. On the other hand, in spite of
their simplicity, such models show rich and interesting behaviour at the
critical point. Also, the existence of the exact solution for the two-dimen-
sional Ising model often makes it an object for verifying different approxi-
mation schemes. All the stated above yielded the high interest devoted to
the problem. In particular a great deal of generalization of the model
appeared. Among different ways of generalization, much attention has been
devoted to the affect of the impurities on the critical behaviour of the Ising-
like models as well as to the investigation of critical regimes of the models
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on the lattices of a non-integer dimension (d). There have been devised dif-
ferent realizations of the last stated generalization. For example, one can
approach the concept of non-integer dimensionality either by explicit con-
struction of the non-integer dimensional object, which leads to the concept
of a fractal,(1) or by formal carrying out an analytic continuation of the
function, which by definition depends on a natural value of dimension.

Within the theory of critical phenomena the latter ambiguity was
reflected in examining the critical behaviour of the many-particle systems
on fractal(2,3) or on abstract hypercubic lattices of the non-integer d. There
arosed a question whether a model on a fractal lattice (being scale
invariant) possesses universality as well as a system on a hypercubic lattice
(having translation invariance). The problem has been widely studied but
still remains open.(4-7) Today's point of view states that the usual demand
for "strong universality" (in sense of critical properties depending only on
symmetry of the order parameter, interaction range and space dimension)
seems not to be obeyed by fractal lattice systems, and for them the concept
of universality itself should be revised.(8,9)

Speaking about the study of Ising-like models on analytically con-
tinued hypercubic lattices of non-integer d, one should note a great variety
of theoretical approaches devised for these problems. These include: the
Wilson-Fisher g-expansion(10) improved by the summation method;(11)

Kadanoff lower-bound renormalization applied to some special non-integer
dimensions;(12) high-temperature expansion improved by a variation tech-
nique;(13) finite-size scaling method applied to numerical transfer-matrices
data;(14,15) new perturbation theory based on the physical branch of the
solution of the renormalization group equation;(16-19) fixed dimension
renormalization group technique(20,21) applied directly to arbitrary non-
integer d.(22,23) Perhaps the first paper devoted to the study of the Ising
model in different, however not non-integer dimension, was(24) where non-
universal properties of the model were discussed. All these approaches, as
well as the computer simulations, confirm the correctness of the univer-
sality hypothesis also for non-integer d hypercubic lattices and allow to
obtain the critical exponents as functions of d with high accuracy.

In spite of the variety of approaches to treat the general non-integer
d case(11-19,22,23) the results for the Ising model critical exponents obtained
on their basis lay close to each other; the above mentioned analytic con-
tinuations may appear actually equivalent. Note, however, that the analytic
continuation in £ = 4 - d at general non-integer dimension leads to the fail
of the Yang-Lee theorem.(25) On the other hand, the study of Ising-like spin
systems on non-integer dimension hypercubic lattices cannot be reduced to
the fractal lattice systems(25) except for the case of vanishing lacunarity
limit(4) and thus is the task of individual interest.
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Returning to the study of the critical behaviour at integer d, one
should note that the problem becomes more complicated when studying
spin systems with a structural disorder. Whereas the case of the annealed
disorder is of less interest from the point of view of determining asymptoti-
cal values of critical exponents,(26) the weak quenched disorder has been a
subject of intensive study. Here the Harris criterion(28) has been devised. It
states that if the heat capacity exponent apure of a pure model is negative,
that is the heat capacity has no divergence at the critical point, impurities
do not affect the critical behaviour of the model in the sense that critical
exponents remain unchanged under dilution. Only in the case apure > 0, the
critical behaviour of the disordered model is governed by a new set of criti-
cal exponents. As far as for a 3dm-vector spin model only the 3d Ising
model (m = 1) is characterized by apure > 0, it is the Ising model which is
of special interest. And because of the triviality of the annealed disorder in
the sense mentioned above, the most interesting object for study is just the
quenched Ising model. The appearance of a set of new critical exponents
for that model at d=3 is confirmed by the experiments,(29-31) renormaliza-
tion group (RG) calculations,(32-41) Monte-Carlo (MC)(42-46) and MCRG(47)

simulations.
The situation is not so simple for the 2d Ising model. Onsager exact

solution of the pure model proves the logarithmic divergence of heat
capacity, which yields apure = 0, and allows one, in accordance with the
Harris criterion, to clasify this case as a marginal one. Most of the theoreti-
cal works suggest that the 2d Ising model with a quenched disorder has the
same critical behaviour as the 2d pure Ising model (except for logarithmic
corrections)(39,40,48-53) (see also review(54)). This result is corroborated by
MC-simulations on two-dimensional lattices(55-59) and experiments.(60,61)

Deviations from the expected critical exponents, which sometimes are
observed during such computations, are explained by a system being not in
the asymptotic region (see ref. 59 for recent study). Nevertheless, some
authors assert that for the 2d Ising model with a quenched disorder a new
critical behaviour appears.(62,63)

While the undiluted Ising model at non-integer d was a subject of
intensive study, (10-19) it is not the case for the diluted Ising model. Only the
work(36) can be mentioned here, where the model was studied within the
Golner-Riedel scaling field(64) approach. It is worthwhile to note that the
e-expansion technique applied to this model, due to the fact that RG-equa-
tions appear to be degenerated on the one loop level, results in e-expan-
sion for the critical exponents.(34) The latter is known up to the three-loop
order(65,66) The equations of the massive field theory at fixed integer d
(refs. 20 and 21) first applied to the diluted Ising model at d = 2, 3 in refs. 35
and 37 were found to be the most effective method for investigating
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in replica limit n->0. Here any (fa is a w-component vector f a = ((pa,2,...,Pa,m);
P a , 2 , . . . ,Pa , m); u0>0, v0<0 are bare coupling constants; m0 is bare mass.

As it was already stated above, we adopt here the massive field theory
renormalization scheme(20,21) in order to extract the critical behaviour gov-
erned by (1). We start from the defined by (1) unrenormalized one-particle
irreducible vertex functions

this problem. In order to consider an arbitrary non-integer d the Parisi
approach(20,21) was generalized in ref. 67 where critical behaviour of the
model was studied in a two-loop approximation. The aim of the present
work, based on the massive field theoretical approach, is to make a more
detailed investigation of the critical behaviour of the diluted O(m)-vector
model at arbitrary d. Though it is the case m = 1 in which we are interested
most of all, we consider the RG-equations for any m, which also allow us
to study the crossover in the model at any d. We will obtain the RG-equa-
tions within the 3-loop approximation and apply to their analysis different
resummation procedures in order to find the most reliable one.

The set-up of the article is as follows. In the next section we introduce
the model and the notation. Then we describe the RG-procedure adopted
here and give the series for the RG-functions of the weakly diluted quenched
m-vector model in the three-loop approximation. Being asymptotic, these
series are to be resummed. This is done in Section 2 where different ways
of resummation are used. Section 3 concludes our study giving results for
the quantitative characteristics of the critical behaviour and discussing
them. In the Conclusions we give some general comments to the present
work. In the Appendix we list some lengthy expressions for the coefficients
of the RG-functions in the three-loop approximation.

1. THE MODEL AND THE RG-PROCEDURE

As it is well known, the critical behaviour of the quenched weakly-
diluted m-vector model is governed by a Lagrangian with two coupling
constants:(34)

Holovatch and Yavors'kii788



Critical Exponents of the Diluted Ising Model 789

depending on the wave vectors { q } , { p } , bare parameters m0,u0, v0 and
the ultraviolet momentum cutoff A0. The vertex functions' dependence on
the space dimension d is explicitly noted here as well. We impose the renor-
malization conditions at zero external momenta and non-zero mass (see
refs. 68 and 69 for instance) at the limit A0 -> i for the renormalized func-
tions (70) F(0,2) F(0,4) F(0,4) F ( l , 2 ) .
UOIlb 1 R , 1 R, u , 1 R, v , * R

with m, u, v being the renormalized mass m = Z3m1 = Z3,F(0,2)(0; m0, u0, v0)
and couplings u = md-4Z2

3Z-1
1,uu0,v = md-4Z2

3Z-1
1,vv0. From these condi-

tions there follow expansions for the renormalized constants for field (Z3),
vertices u(Z1,u), u(Z1 ,v) and j2 insertion (Z2). Subsequently, these define
the coefficients B, y entering the corresponding Callan-Symanzik equation:

In the stable fixed point {u*, v*} to be defined by simultaneous zero
of both B-functions:

the ys-function gives the critical exponent n of the pair correlation function:



Using familiar scaling relations, one can easily calculate any other
critical exponents on the base of 77 and v.

Applying the described above procedure, one obtains in the three-loop
approximation(71) B- and y-functions in the form:(72)

The correlation length critical exponent v is defined in the stable fixed
point by:
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Here d is the space dimension, m is the order parameter component num-
ber, n is the replica index, i1 and i2 are dimensionally dependent two-loop
integrals. The corresponding coefficients for three-loop parts are listed in
the Appendix. The values for the three-loop integrals i3 • • • ig which appear
in three-loop coefficients for integer d = 2, 3 are listed in.(73) In particular,
substituting loop integrals i1,i2 as well as i3,..., i8 in (15)-(18) by their
values at d= 3 we get at n = 0, m = 1 the corresponding functions of the 3d
weakly diluted Ising model, which in the 3-loop approximation were
obtained in ref. 35. At d= 3, m, n-arbitrary corresponding expressions coin-
cide with those, obtained for the 3d anisotropic mn-vector model in ref. 74.
Our idea is to keep the dimensional dependence of the loop integrals and,
being based on their numerical values for arbitrary d,(23) to study the
O(mn)-model at arbitrary (non-integer) d as well. But for the reason
explained above, the point of main interest here will be the replica limit
n = 0 of the anisotropic raw-vector model, especially the case m = 1.

Expressions for B- and y-functions will be the starting point for the
qualitative study of the main features of the critical behaviour which will
be done in the next section.

2. THE RESUMMATION

As we have already mentioned, the values of the y-functions in a fixed
point (u*, v*) lead to the values of the critical exponents n and v. However,
it is well known now that the series for RG-functions are of asymptotic
nature(75-77) and imply the corresponding resummation procedure to
extract reliable data on their basis. Let us note, however, that as to our
knowledge the asymptotic nature of the series for RG-functions have been
proved only for the case of the model with one coupling,(78) and the
application of a resummation procedure to the case of several coupling
constants is based rather on general belief than on a proved fact. One of
the resummation procedures, which in different modifications is most com-
monly used in the studies of asymptotic series, is known as the integral
Borel transformation.(79) However, this technique implies explicit know-
ledge of the general term of a series and thus cannot be applied here, where
only truncated sums of the series are known. To get over this obstacle one
represents the so-called Borel-Leroy image of the initial sum in the form of
a rational approximant and in such a way reconstitutes the general term of
the series. The technique which involves a rational approximation and the
Borel transformation together, is known as the Pade-Borel resummation
technique (in the field-theoretical RG content see refs. 81 and 82 as an
example of its application).
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Generalization to the many-variable case is trivial.
Now one can take into account that the second step of the stated

scheme can be done in different ways. one can write down various Fade
approximants in the variable t to obtain within the three-loop approxima-
tion the expressions of the structure [2/1], [1/2] and [0/3]. It is also
possible to use Chisholm approximants(84) in the variables u and v, which,
generally speaking, in the same number of loops can be of type [3/1],
[2/2], [1/3] and [0/4], but the explicit definition of any approximant
needs some additional equations now.(84) The technique, which involves
Chisholm approximation together with the integral Borel transformation is
referred to as the Chisholm-Borel resummation technique. To be consis-
tent, one would have to apply the all different resummation frameworks in

In the two variables case only the first step is changed; namely, here
we define the Borel-Leroy image as

where F(x) is the Euler's gamma function and p is an arbitrary non-negative
number. The special cases p = 0 and p = 1 correspond to resumming B-func-
tions without or with prefactors u and v in accordance with the structure
of the functions (15)-(16);

• the Borel-Leroy image (19) is extrapolated by a rational approxi-
mant [M/N](xt) , where by [ M / N ] one means the quotient of two polyno-
mials; M is the order of the numerator and N is that of the denominator;

• the resummed function Sres is obtained in the form:

Note here that the resummation technique, based on the conformal
mapping, which is widely used in the theory of critical phenomena,(83) can-
not be applied in our case because its application postulates information on
the high order behaviour of the series for B- and y-functions. The latter is
still unknown for the theory with the Lagrangian (1).

To summarize up the stated let us write that the Pade-Borel resumma-
tion is performed as follows:

• constructing the Borel-Leroy image of the initial sum S of n terms:
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order to obtain reliable results on their basis and find which of the methods
is the most effective. However, strong restriction on the number of choices
can be imposed.

First of all, an approximant should be chosen in the form reconstitut-
ing the signalternating high-order behaviour of the general term of B- and
y-functions, which was confirmed in the particular case m = 1, n = 2 and
n = 3.(85) The approximant generating a sign-alternating series might be
chosen in a form [M/l] with the positive coefficients at the variable t
(or u and v). Choosing an approximant with a non-linear denominator,
generally speaking, one does not ensure the desired properties. Direct
calculations affirm the argumentation: B-functions, resummed with the
Pade-Borel and the Chisholm-Borel methods with approximants [M/./V],
N > 1, for u < 0, v > 0 give the roots which lie far from the expected values
which for d= 3 are known up to the order of four loops(39) and for general
d were calculated from the two-loop B-functions.(67) This is true for any p.
The stated results permit us to eliminate from the consideration
approximants with a non-linear denominator.

Note as well that choosing representation of the RG-functions
(15)-(18) in the form of Pade or Chisholm approximant of type [M/1]
might result in the appearance of a pole in the expression. Here we use an
analytical continuation of the resulting expressions by evaluating the prin-
cipal value of the integral. Treating the task in this way one notes that the
topological structure of the lines of zeros for the resummed by the Pade-
Borel technique B-functions is very different in the region near the solution
for the mixed fixed point and strongly irregular when passing through the
number of loops. In particular this yields that in the three-loop approxima-
tion there exist two solutions close to the expected value of the mixed fixed
point. To compare, the results obtained within the frames of the Chisholm-
Borel method do not have these faults and are more stable from the point
of view of proceeding in number of loops.

So, the results given below are obtained by the Chisholm-Borel method
applied to the approximant of type [3/1]. In order to determine the form
of this approximant completely one must define two additional conditions.
The approximants are expected to be symmetric in variables u and v,
otherwise the properties of the symmetry related to these variables would
depend, except for the properties of the Lagrangian, on the method of
calculation. By the substitution v = 0 all the equations which describe the
critical behaviour of the diluted model are converted into appropriate
equations of the pure model. However, if pure model is solved indepen-
dently, the resummation technique with the application of Pade approxi-
mant is used. Thus, Chisholm approximant is to be chosen in such a way
that, by putting any of M or u equal to zero, one obtains Pade approximant
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for a one-variable case. This also implies a special choice of additional
conditions. In the present study amidst all the possible expressions which
satisfy the stated demand we choose Chisholm approximant [ 3/1 ] by putting
coefficients at u3 and v3 to be equal to zero.

3. RESULTS

Now we are going to apply the mathematical framework which was
discussed in previous sections in order to obtain numerical characteristics
of the critical behaviour of the weakly-diluted Ising model in general
dimensions. It was noted in the Section 1 that the critical behaviour of
the quenched weakly-diluted Ising model is described by the effective
Lagrangian (1) in the case m = 1 and zero replica limit n = 0. Namely, the
task in the end comes to obtaining fixed points which are defined by
simultaneous zero of the both B-functions. Among all the possible fixed
points one is interested only in those in the ranges u* >0, v* <0 and only
in stable ones where the stability means that two eigenvalues b1, b2 of the
stability matrix B = dB u i / dU j | u i , ui= { u , v } are positive or possess positive
real parts. The structure of the B-functions (15)-(16) yields the possibility
of four solutions for the fixed points. The first two {u*=0, v*=0} and
{u* = 0, v*>0} in our case at d<4 are out of physical interest, while the
second pair which consists of pure {u*>0, v* = 0} and mixed {u*>0,
v* <0} points, are responsible for two possible critical regimes. The critical
behaviour of the diluted model coincides with that of the pure model when
the pure fixed point appears to be stable. If the mixed point is stable, the
new (diluted) critical behaviour of the system takes place. The type of the
critical behaviour depends on the number m of the order parameter com-
ponents and on the dimensionality d: at any d, 2 < d < 4 a system with
large enough m is not sensitive to the weak dilution in the sense that
asymptotic values of critical exponents do not change; only starting from
some marginal value mc, at m < mc a mixed fixed point becomes stable and
the crossover to the random critical behaviour occurs. The problem of
determining mc as a function of d will be discussed later. Now we would
like to state that mc> 1 for any d, 2 < d < 4 , and thus just the mixed fixed
point governs the asymptotic critical behaviour of the diluted Ising model.

If one attempts to find the fixed points from the B-functions (15)-(16)
without resummation, there always appears only the Gaussian {u*=0,
v* = 0} trivial solution; the existence of the rest possible three fixed points
depends on the concrete details of the B-functions portions in the braces in
expressions (15)-(16). In a 3d case it appears that without a resummation
the non-trivial mixed fixed point does not exist in one-, two- and four-loop
approximations.(39,40) It is only the three-loop approximation where all the
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Fig. 1. The non-resummed B-functions in the three-loop approximation; d=3, m= 1, n = 0.
The dark surface corresponds to the Bu-function.

four solutions of the set of equations (12) exist.(35) In Fig. 1 we show the
behaviour of the non-resummed B-functions of the three-dimensional
weakly diluted Ising model in the three-loop approximation. Resummed
functions are shown in the same approximation in Fig. 2. Note that in this
approximation the shape of the functions remains alike in the region of
small couplings u and v. Fixed points correspond to the crossing of the
lines Bu = 0, Bu = 0 as it is demonstrated in Figs. 3 and 4. The left-hand

Fig. 2. The Chisholm-Borel resummed B-fucntions in the three-loop approximation; d=3,
m = 1, n = 0. The dark surface corresponds to the Bu-function.



Fig. 3. The lines of zeros of non-resummed (left-hand column) and resummed by the
Chisholm-Borel method (right-hand column) B-functions for m = 1, n = 0 in different orders of
the perturbation theory: one- and two-loop approximations. Circles correspond to Bu = 0,
thick lines depict Bv = 0. Thin solid and dashed lines show the roots of the analytically con-
tinued functions Bu and Bv respectively. One can see the appearance of the mixed fixed point
u > 0, v< 0 in the two-loop approximation for the resummed B-functions.

column in Figs. 3 and 4 shows the lines of zeros of non-resummed B- func-
tions in three-dimensions in one-, two-, three- and four-loop (results of
refs. 39 and 40) approximations. One can see in the figures that without
resummation all non-trivial solutions are obtained only within the threeloop
level of the perturbation theory. In the next order all fixed points disappear
which is a strong evidence of their accidental origin. At any arbitrary d,
2 < d < 4 the qualitative behaviour of the functions is very similar to that
shown in Figs. 3 and 4.

As it has already been mentioned, in order to reestablish the lost pure
and mixed points one applies the resummation procedure to B-functions. In
the three-dimensional space the result of resummation is illustrated by the
right-hand column in Figs. 3 and 4. Here we have used the Chisholm-Borel
resummation technique choosing Chisholm approximant in the form dis-
cussed in the previous Section with p = 1 in successive approximation in
the number of loops. The icons in the figures which correspond to a one-
loop level are the visual proof of the degeneracy of the B-functions in this
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Fig. 4. The lines of zeros of non-resummed (left-hand column) and resummed by the
Chisholm-Borel method (right-hand column) B-functions for m= 1, n = 0 in three- and four-
loop approximations. The notations are the same as in Fig. 3. Close to the mixed fixed point
the behavior of the resummed functions remains alike with the increase of the order of
approximation. This is not the case for non-resummed functions.

order of the perturbation theory: the plots of root-lines are parallel inde-
pendently of resummation. The rest three images in the right-hand columns
are a good graphic demonstration of the reliability of the Chisholm-Borel
resummational method: two-, three- and four-loop pictures are quanti-
tatively similar, the coordinates of the pure and mixed point are close.

The numerical results of our study are given in Table I. Here, the
coordinates of the stable mixed fixed point and the values of the critical
exponents of the quenched weakly diluted Ising model are listed as func-
tions of d between d = 2 and d = 3.8. The eigenvalues b1 and b2 of the
stability matrix are given as well.

It was already noted that the values of y-functions in a stable point
yield the numerical characteristics of the critical behaviour of the model.
For example, given the resummed functions yRes and y2

Res, the pair of
equations
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Table 1. The Stable Point Coordinates, Critical Exponents and the
Eigenvalues of the Stability Matrix of the Weakly Diluted

Ising Model at Arbitrary da

d

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

u*

2.0268
2.0327
2.0412
2.0525
2.0671
2.0854
2.1081
2.1359
2.1698
2.2113
2.2621
2.3250
2.4039
2.5044
2.6359
2.8140
3.0678
3.4570
4.0852

V*

-0.2802
-0.3156
-0.3523
-0.3908
-0.4312
-0.4740
-0.5196
-0.5687
-0.6219
-0.6803
-0.7454
-0.8190
-0.9038
-1.0040
-1.1259
-1.2804
-1.4869
-1.7849
-2.2303

y

.840

.768

.703

.643

.588

.536

.489

.445

.404

.365

.328

.294

.261

.230

.200

.171

.144

.116

.087

V

0.966
0.923
0.884
0.848
0.816
0.787
0.760
0.735
0.712
0.691
0.671
0.652
0.634
0.618
0.602
0.587
0.572
0.558
0.544

a

0.067
0.062
0.056
0.049
0.041
0.033
0.025
0.016
0.007

-0.002
-0.016
-0.021
-0.030
-0.038
-0.046
-0.054
-0.061
-0.066
-0.066

1

0.097
0.084
0.073
0.064
0.055
0.047
0.040
0.034
0.028
0.023
0.019
0.015
0.012
0.009
0.006
0.004
0.002
0.001
0.000

b1

0.2176
0.2373
0.2562
0.2742
0.2913
0.3074
0.3226
0.3370

b2

.5189

.4608
1.4011
.3395
.2759
.2100
.1418
.0709

0.3505 0.9971
0.3635 0.9197
0.3764 0.8380
0.3905 0.7504
0.4095 0.6528
0.4653 0.5127
0.4436c 0.4436c

0.3946c 0.3946c

0.34 11c 0.3411c

0.2822c 0.2822c

0.2136c 0.2136c

a The three-loop approximation (the superscript "c" denotes that real parts of the corresponding
eigenvalues are given).

allows us to find the exponents n and v. All other exponents can be
obtained from the familiar scaling laws.

However, one can proceed in a different way. That is, by means of the
scaling laws it is possible to reconstitute the expansion in coupling con-
stants of any exponent of interest or of any combination of exponents, and
only after that to apply the resummation procedure. If exact calculation
were performed the answer would not depend on the sequence of operations.
However, this is not the case for the present approximate calculations.
We have chosen the scheme of computing where the resummation proce-
dure was applied to the combination v-1 — 1 = 1 — j2 — ys and y-1 =
(2 —j2 — j s) /(2 — y s ) . The exponents a, B and n have been calculated on
the basis of numerical values of the exponents y and v. The resummation
scheme appears to be quite insensitive to the choice of the parameter p
given by (19), (20). However note, that computations have been performed
here, as well as in ref. 67, with p = 1.

Comparing our data from Table I for the critical exponents at d =2
with the results for the pure Ising model one can see that the exponent y



differs from the exact value 7/4 by the order of 5%, the exponent v is
smaller from the exact value v = 1 less than by 4%. This confirm the con-
jecture that the critical behaviour of the weakly diluted quenched Ising
model at d = 2 within logarithmic correction coincide with that of the pure
model (see ref. 54 for review). It is also interesting to compare numbers
given in Table I with those obtained for general d within the 2-loop
approximation:(67) all the exponents of the three-loop level lie slightly
farther from the expected exact values of Onsager than those of the two-
loop approximation. This may be explained by the oscillatory nature of
approaching to the exact values depending on the order of the perturbation
theory. It is also interesting to note that the two-loop approximation yields
better estimates for the heat capacity critical exponent a for all d in the
range under consideration. Namely, in accordance with the Harris criterion,
the exponent a for the diluted Ising system should remain negative. This
picture is confirmed much better by the two-loop approximation where a
is negative in the whole range of d, unlike the three-loop level of the pertur-
bation theory, the results of which yield a>0 for 2 < d < 2 . 8 .

However, Table I shows that the next (third) order does improve our
understanding of the critical behaviour of the model in general dimensions.
The results of the two-loop calculations(67) show that starting from some
marginal space dimension the approach to the stable point becomes
oscillatory: the eigenvalues b1 and b2 turn to be complex possessing
positive real parts. This is an artifact of the calculation scheme and there-
fore it was expected(67) that by increasing the accuracy of calculations one
decreases the region of d which corresponds to the complex eigenvalues. It
is really the case. In the three-loop approximation the region of complex
b1 ,b2 is bounded from below by d=3.3, whereas in the two-loop
approximation(67) the corresponding value is lower and is equal to d = 2.9.
Thus, the region of d characterized by the oscillatory approach to the
stable fixed point shrinks with the increase of the order of the perturbation
theory.

The comparison of the three-dimensional value of v with the four-loop
result(40) v = 0.6701 gives the accuracy of 0.05% for our computations
(compare with 1% for two-loops, where the value v(d = 3) = 0.678 was
obtained). Thus, it may be stated that the general accuracy of calculations
decreases when passing from d = 4 to d = 2 which, in particular, results
from the fact that our approach is asymptotically exact at upper critical
dimension d = 4.

The comparison of the present results with the other data available is
provided by Fig. 5. Here, the behaviour of the correlation length critical
exponent v obtained by different methods is demonstrated in general
dimensions. The results of the massive field-theoretical scheme are plotted
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Fig. 5. The correlation length critical exponent v of the weakly diluted Ising model as a
function of the space dimension d. The result of two- (ref. 67) and three-loop (the present
paper) approximations are shown by the dashed and the solid lines respectively, the square
reflects the number of the four-loop approximation(40) at d=3, stars correspond to work(36)

and open diamonds refer to the resummed ^/e-expansion.

by solid (three-loop approximation; the present paper) and dashed (two-
loop approximation; ref. 67) lines. One can see that the two lines practi-
cally coincide far enough from d = 2, in particular, both lie very close to the
most accurate result for d=3 (ref. 40) which is shown by the box. The
application of the scaling-field method(36) yields numbers shown in Fig. 5
by stars. The limit from below (d = 2.8) of the method applicability is
caused by the truncation of the set of scaling-field equations, which was
considered in ref. 36. One can also attempt to obtain some results by
resumming the ^/e-expansion which is known for the diluted Ising model
up to three-loop order(65,66) and for the exponents v and n reads:
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where C(3) ~ 1.202 is Rieman's zeta function. The corresponding results are
shown by open diamonds. They were obtained by applying the Pade-Borel
resummation scheme to the series of N/e-expansion (24).(65,66) The value of
v obtained in such a way is of physical interest only very close to d = 4.
Even in the next orders of the expansions the values of critical exponents
are not improved;(86) this is an evidence of the ^/e-expansion unreliability
in tasks like the one under consideration. To compare, one can state that
the situation with the applied in the present paper theoretical scheme is
contrary to the ,/^-expansion. While the twoloop approximation is valid
in ranges 2 < d < 3.4, the next order of the perturbation theory enlarges the
upper bound up to d=3.8. One can expect that the next steps within the
perturbation theory will allow one to obtain the description of the critical
behaviour of the model with enough accuracy for any d, 2 < d < 4 .

Let us recall now that expressions (15)-(18) for the RG-functions, as
well as their three-loop parts listed in the Appendix, allow us to study
asymptotic critical properties of the mn-vector model with arbitrary m and
n in arbitrary d not only for the case m = 1, n =0. In particular, by keeping
TO as an arbitrary number and putting n = 0 one can obtain the numerical
estimates for the marginal order parameter component number mc which
divides the diluted (governed by the mixed fixed point) asymptotic critical
behaviour from the pure one, when the O(m (-symmetric fixed point
remains stable. In accordance with the Harris criterion the case m = mc

corresponds to zero of the heat capacity critical exponent a of the model.
One may extract the value of mc from this condition. However, the above
discussed results of the three-loop approximation do not yield enough
accuracy for a. Alternatively, the fixed mixed point should coincide with
the pure fixed point at m = mc, which in particular means that
v*(m = mc)|mixed = 0. The last condition was chosen as a basis of our
calculation. The appropriate numbers of the present three-loop approxima-
tion (thick solid line) together with the data of the two-loop approximation
(dashed line)(67) are shown in Fig. 6. The result of e-expansion mc = 4 — 4e
is depicted by the thin solid line. In the three-loop approximation we
obtain mC=1.40, d = 2 and mc = 2.12, d=3. These values are to be com-
pared with the exact results of Onsager which yield mc = 1 at d = 2, and the
theoretical estimate mc= 1.945 + 0.002.(87) One can see that the two-loop
results are closer to the expected values for both d=2 and d=3. For a
two-dimensional case the two-loop value mc= 1.19 (ref. 67) differs from the
exact one by 20%, while the three-loop number decreases the accuracy to
40%. The case d=3, mc>2 contradicts the suggestion that the xy-model
asymptotic critical behaviour should not change under dilution in three-
dimensions. The reason for decreasing the calculation accuracy with
increasing the order of the perturbation theory may lie in oscillatory
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Fig. 6. The dependence of the marginal order parameter component number mc on the
space dimension d. Two- and three-loop results are shown by the dashed and thick solid lines
respectively, the e-expansion data mc = 4 — 4s are depicted by the thin solid line.

approach to the exact result. One can expect that already the four-loop
case will improve the estimates for mc for all 2 < d< 4. Let us also note that
the determination of mc may serve as a test for improving the resummation
scheme.

4. CONCLUSIONS

The goal of this paper is to study the critical behaviour of the weakly
diluted quenched Ising model in the case when the space dimension d
continuously changes from d=2 to d=4.

As it was mentioned in the Introduction, the study of the pure Ising
model at arbitrary d, which corresponds to a scalar field-theoretical model
with one coupling constant, is the subject of a great deal of papers. It is not
the case for the model with a more complicated symmetry. In particular,
here we study a model with two couplings corresponding to terms of
different symmetry in the Lagrangian (1). Such a problem was studied
previously on the basis of the scaling-field method,(36) and field-theoretical
fixed dimension renormalization group calculations within a two-loop level
of the perturbation theory are available.(67)
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Our calculations hold within the theoretical scheme of refs. 23 and 67.
This approach appears to be one amidst other possible calculation schemes
for many tasks; however, in our case it seems to have no alternatives within
the field-theoretical approach.

Being asymptotic, the resulting series for the RG-functions are to be
resummed. In the present study we have chosen the Pade-Borel and the
Chisholm-Borel resummation techniques. Restricting ourselves to analytic
expressions for the resummed functions, we present numerical data mainly
obtained on the basis of the Chisholm-Borel resummation technique. Note
that the absence of any information on the high-order behaviour of the
obtained series for the RG-functions does not allow one to apply other
resummation schemes, e.g. those based on the conformal mapping techni-
que.(83)

The quantitative description of the critical behaviour of the model is
steady from the point of view of passing from the two- to the three-loop
approximation. Smaller agreement between the two- and the three-loop
approximations at d far away from d = 4 may be explained in a way that
the precision of computing falls down with the increase of the expansion
parameter which takes place at decrease of d. The real parts of eigenvalues
corresponding to the mixed point seem to remain positive up to d = 4,
which testifies that at arbitrary d the weakly diluted quenched Ising model
is described by the mixed fixed point.

APPENDIX

Here we have collected the most lengthy expressions for the three-loop
contributions to the RG-functions. The three-loop part of the Bu -function
reads:

where



The three-loop part of the Bv -function reads:

where

804 Holovatch and Yavors'kii



Critical Exponents of the Diluted Ising Model 805

The three-loop part of the ys -function reads:

The three-loop part of the y2-function reads:

where
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